3 research outputs found

    Sparse Matrix Approach in Neural Networks for Effective Medical Data Sets Classifications

    Get PDF
    In this paper, a hybrid intelligent system that consists of the sparse matrix approach incorporated in neural network learning model as a decision support tool for medical data classification is presented. The main objective of this research is to develop an effective intelligent system that can be used by medical practitioners to accelerate diagnosis and treatment processes. The sparse matrix approach incorporated in neural network learning algorithm for scalability, minimize higher memory storage capacity usage, enhancing implementation time and speed up the analysis of the medical data classification problem. The hybrid intelligent system aims to exploit the advantages of the constituent models and, at the same time, alleviate their limitations. The proposed intelligent classification system maximizes the intelligently classification of medical data and minimizes the number of trends inaccurately identified. To evaluate the effectiveness of the hybrid intelligent system, three benchmark medical data sets, viz., Hepatitis, SPECT Heart and Cleveland Heart from the UCI Repository of Machine Learning, are used for evaluation. A number of useful performance metrics in medical applications which include accuracy, sensitivity, specificity. The results were analyzed and compared with those from other methods published in the literature. The experimental outcomes positively demonstrate that the hybrid intelligent system was effective in undertaking medical data classification tasks

    Modified election algorithm in hopfield neural network for optimal random

    No full text
    Election algorithm (EA) is a novel metaheuristics optimization model motivated by phenomena of the socio-political mechanism of presidential election conducted in many countries. The capability and robustness EA in finding an optimal solution to optimization has been proven by various researchers. In this paper, modified version of EA has been utilized in accelerating the searching capacity of Hopfield neural network (HNN) learning phase for optimal random-kSAT logical representation (HNN-R2SATEA). The utility of the proposed approach has been contrasted with the current standard exhaustive search algorithm (HNN-R2SATES) and the newly developed algorithm HNN-R2SATICA. From the analysis obtained, it has been clearly shown that the proposed hybrid computational model HNN-R2SATEA outperformed other existing model in terms of global minima ratio (Zm), mean absolute error (MAE), Bayesian information criterion (BIC) and execution time (ET). The finding portrays that the MEA algorithm surpassed the other two algorithms for optimal random-kSAT logical representation
    corecore